RhoA and ROCK promote migration by limiting membrane protrusions.

نویسندگان

  • Rebecca A Worthylake
  • Keith Burridge
چکیده

Previously, we and others have shown that RhoA and ROCK signaling are required for negatively regulating integrin-mediated adhesion and for tail retraction of migrating leukocytes. This study continues our investigation into the molecular mechanisms underlying RhoA/ROCK-regulated integrin adhesion. We show that inhibition of ROCK up-regulates integrin-mediated adhesion, which is accompanied by both increased phosphotyrosine signaling through Pyk-2 and paxillin and inappropriate membrane protrusions. We provide evidence that inhibition of ROCK induces integrin adhesion by promoting remodeling of the actin cytoskeleton. Furthermore, we find that ROCK regulates membrane activity through a pathway involving cofilin. Inhibition of RhoA signaling allows the formation of multiple competing lamellipodia that disrupt productive migration of monocytes. Together, our results show that RhoA/ROCK signaling promotes migration by restricting integrin activity and membrane protrusions to the leading edge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

α5β1 integrin recycling promotes Arp2/3-independent cancer cell invasion via the formin FHOD3

Invasive migration in 3D extracellular matrix (ECM) is crucial to cancer metastasis, yet little is known of the molecular mechanisms that drive reorganization of the cytoskeleton as cancer cells disseminate in vivo. 2D Rac-driven lamellipodial migration is well understood, but how these features apply to 3D migration is not clear. We find that lamellipodia-like protrusions and retrograde actin ...

متن کامل

A MAPK-Driven Feedback Loop Suppresses Rac Activity to Promote RhoA-Driven Cancer Cell Invasion

Cell migration in 3D microenvironments is fundamental to development, homeostasis and the pathobiology of diseases such as cancer. Rab-coupling protein (RCP) dependent co-trafficking of α5β1 and EGFR1 promotes cancer cell invasion into fibronectin (FN) containing extracellular matrix (ECM), by potentiating EGFR1 signalling at the front of invasive cells. This promotes a switch in RhoGTPase sign...

متن کامل

The Rho guanine nucleotide exchange factor Syx regulates the balance of dia and ROCK activities to promote polarized-cancer-cell migration.

The role of RhoA in promoting directed cell migration has been complicated by studies showing that it is activated both in the front and the rear of migrating cells. We report here that the RhoA-specific guanine nucleotide exchange factor Syx is required for the polarity of actively migrating brain and breast tumor cells. This function of Syx is mediated by the selective activation of the RhoA ...

متن کامل

Coordinated RhoA signaling at the leading edge and uropod is required for T cell transendothelial migration

Transendothelial migration (TEM) is a tightly regulated process whereby leukocytes migrate from the vasculature into tissues. Rho guanosine triphosphatases (GTPases) are implicated in TEM, but the contributions of individual Rho family members are not known. In this study, we use an RNA interference screen to identify which Rho GTPases affect T cell TEM and demonstrate that RhoA is critical for...

متن کامل

Chemokine receptor 7 promotes tumor migration and invasiveness via the RhoA/ROCK pathway in metastatic squamous cell carcinoma of the head and neck.

Metastatic squamous cell carcinoma of the head and neck (SCCHN) has been shown to express chemokine receptor 7 (CCR7), which can activate signaling pathways to promote invasion and survival of SCCHN cells. We hypothesized that the RhoA/Rho-associated kinase (ROCK) pathway is involved in the CCR7-induced invasion and migration of metastatic SCCHN cells. Thus, using migration, matrigel invasion a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 15  شماره 

صفحات  -

تاریخ انتشار 2003